Abstract

Axion production due to photon-axion mixing in tangled magnetic field(s) prior to recombination epoch and magnetic field damping can generate cosmic microwave background (CMB) spectral distortions. In particular, contribution of both processes to CMB $\mu$ distortion in the case of resonant photon-axion mixing is studied. Assuming that magnetic field power spectrum is approximated by a power law $P_B(k)\propto k^n$ with spectral index $n$, it is shown that for magnetic field cut-off scales $172.5$ pc $\leq \lambda_B\leq 4\times 10^3$ pc, axion contribution to CMB $\mu$ distortion is subdominant in comparison with magnetic field damping in the cosmological plasma. Using COBE upper limit on $\mu$ and for magnetic field scale $\lambda_B\simeq 415$ pc, weaker limit in comparison with other studies on the magnetic field strength ($B_0\leq 8.5\times 10^{-8}$ G) up to a factor 10 for the DFSZ axion model and axion mass $m_a\geq 2.6\times 10^{-6}$ eV is found. A forecast for the expected sensitivity of PIXIE/PRISM on $\mu$ is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.