Abstract

Contrary to electricity smart meter data analysis, little research regarding district heat smart meter data has been published. Previous papers on smart meter data analytics have not investigated autocorrelation in smart meter data. This paper examines district heat smart meter data from the largest district heat supplier in Denmark and autocorrelation is identified in the data. The K-Means algorithm is not able to take autocorrelation into account when clustering. We propose different data transformation methods to enable K-Means to account for this autocorrelation information in the data by using wavelet transformation and autocorrelation features. Our results show that the K-Means yield acceptable clustering results for district heat data when clustering normalized data, inclusion of autocorrelation improves the clustering. The clusters on normalized data are similar to the wavelet transformed clusters, where the autocorrelation has been accounted for. The clustering achieved with the autocorrelation transformation yields finer clusters through accounting for autocorrelation. We are not able to statistically show a difference between the transformations. All transformations result in shadowing clusters, but the autocorrelation transformation generates fewer shadow clusters and reduce the number of dimensions from 744 to 24, resulting in a dramatic reduction in K-Means runtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.