Abstract
Self-exploration capability is an important and necessary factor in all social communities where individual assumes to have their own intelligence. Macro social influencing factors are responsible for decision nature taken by an individual, whereas self-exploration process can be considered as a refinement of that decision by use of the cognitive capability to explore a number of surrounding possibilities. The mathematical model corresponding to the individual self-exploration process can be expressed with the help of the chaotic search method. In this paper, chaotic search-based self-exploration has integrated with social influenced-based particle swarm optimisation (PSO) to represent better computational model so that the complex optimisation problem could solve more efficiently. Two different levels of self-exploration called intrinsic cascade self-exploration and extrinsic cascade self-exploration have applied in association with PSO. This paper has applied the proposed concept to cluster documents data in the area of information retrieval and to achieve the global solutions for high dimensional numerical optimisation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Engineering Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.