Abstract

An electronic transition-based bare bones particle swarm optimization (ETBBPSO) algorithm is proposed in this paper. The ETBBPSO is designed to present high precision results for high dimensional single-objective optimization problems. Particles in the ETBBPSO are divided into different orbits. A transition operator is proposed to enhance the global search ability of ETBBPSO. The transition behavior of particles gives the swarm more chance to escape from local minimums. In addition, an orbit merge operator is proposed in this paper. An orbit with low search ability will be merged by an orbit with high search ability. Extensive experiments with CEC2014 and CEC2020 are evaluated with ETBBPSO. Four famous population-based algorithms are also selected in the control group. Experimental results prove that ETBBPSO can present high precision results for high dimensional single-objective optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.