Abstract
This paper attempts to address the question of scaling up Particle Swarm Optimization (PSO) algorithms to high dimensional optimization problems. We present a cooperative coevolving PSO (CCPSO) algorithm incorporating random grouping and adaptive weighting, two techniques that have been shown to be effective for handling high dimensional nonseparable problems. The proposed CCPSO algorithms out-performed a previously developed coevolving PSO algorithm on nonseparable functions of 30 dimensions. Furthermore, the scalability of the proposed algorithm to high dimensional nonseparable problems (of up to 1000 dimensions) is examined and compared with two existing coevolving Differential Evolution (DE) algorithms, and new insights are obtained. Our experimental results show the proposed CCPSO algorithms can perform reasonably well with only a small number of evaluations. The results also suggest that both the random grouping and adaptive weighting schemes are viable approaches that can be generalized to other evolutionary optimization methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.