Abstract

AbstractTropical cyclone (TC) tracks over the western North Pacific (WNP) in 1979–2013 are classified by a self-organizing map technique. A false detection rate method identifies five optimal TC clusters. Physical mechanisms of the intraseasonal and interannual variations in the TC genesis frequency are investigated for each cluster. The five clusters are separated by genesis location, from the westernmost area (east of the Philippines, C1) to the easternmost (~150°E, C5) onset area over the WNP. The intraseasonal Madden–Julian oscillation (MJO) significantly affects the genesis frequency for all clusters except for C5. In particular, MJO phases 5 and 6 (1 and 2) provide significantly favorable (unfavorable) large-scale conditions for TC genesis. Two types of El Niño–Southern Oscillation influence the interannual variation of the genesis frequency for only C2 (generated over the western Philippine Sea and East China Sea) and C4 (formed near the eastern Philippine Sea). Enhanced eastern Pacific sea surface temperature (SST) anomalies lead to a ~40% decrease in the C2 TC frequency through a reversed Walker circulation with downward motion over the WNP. Conversely, increased central Pacific SST anomalies generate a cyclonic Rossby wave northwest of the forcing, inducing a significant increase (~50%) in the C4 TC frequency. The interannual variability for the C5 TCs is strongly controlled by the variation of the western Pacific subtropical high (WPSH). A positive WPSH variation reduces the C5 TC genesis frequency by 66%, while negative WPSH anomalies enhance the frequency by 50%. A prediction scheme using information from the first four 6-h TC locations demonstrates a skillful determination of TC clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.