Abstract
Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichmuller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.|Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichmuller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.