Abstract
Cluster algebras are commutative rings with a set of distinguished generators having a remarkable combinatorial structure. They were introduced by Fomin and Zelevinsky in 2000 in the context of Lie theory, but have since appeared in many other contexts, from Poisson geometry to triangulations of surfaces and Teichmuller theory. In this expository paper we give an introduction to cluster algebras, and illustrate how this framework naturally arises in Teichmuller theory. We then sketch how the theory of cluster algebras led to a proof of the Zamolodchikov periodicity conjecture in mathematical physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.