Abstract
This paper investigates the application of a particular type of probabilistic neural networks, namely radial basis function (RBF) networks, to detecting cloud in NOAA/AVHRR images. Based on the images collected from the East China Sea, the paper compares the performance of RBF networks with that of traditional multi-layer perceptrons (MLPs). The main results show that RBF networks are able to handle complex atmospheric and oceanographic phenomena while MLPs could not. The internal representation of the RBF networks and MLPs are also detailed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.