Abstract
Solar energy is the main driver of the climate on Eart, thus the variation of solar activity may affect climate variability via changes in irradiation, energetic particles, cosmic ray flux or solar wind parameters. Solar wind is characterized by speed, magnetic and electric fields, flow pressure, particle flux, dynamic pressure, with various effects on atmospheric processes. One of these is the formation and evolution of clouds which play a crucial role in the terrestrial climate, since they induce cooling or warming effects, depending on their heights and composition. Possible relationship between solar activity and cloud cover variability are lately the subject of various studies, but no clear conclusion exists due to contradictory results obtained so far. This article studies the possible relationship between mean cloud cover and the interplanetary magnetic field at global scale, as well as geographical/regional characteristics for the 1984 – 2009 period, i. e. for solar cycles 22-23, when satellite observations are available at global scale and on a continuous basis. The study also shows the seasonal dependence and is made for different cloud height and composition, i. e. for low/middle/high and liquid/ice types of clouds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have