Abstract
This paper reports a closed-form analytical drain current model considering energy transport and self-heating for short-channel fully-depleted (FD) SOI NMOS devices with lightly-doped drain (LDD) structure. As verified by the two-dimensional (2-D) simulation results, the analytical drain current model considering energy transport and self-heating provides an accurate prediction of the drain current behavior of the 0.25-/spl mu/m FD SOI NMOS device with and without an LDD structure. From the analytical model, with the LDD structure, the device has a smaller effective electron mobility at a low drain voltage, where lattice temperature is dominant, and a higher effective mobility at a high drain voltage, where electron temperature dominates, as compared to the non-LDD device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.