Abstract
BackgroundIn an enhanced recovery after surgery program, not placing a closed suction drain following routine primary total joint arthroplasty (TJA) is becoming more acceptable. However, the influence of drain use on transfusion rate and postoperative length of stay (PLOS) in TJA remains controversial. Therefore, we aimed to compare drain use with no drain in routine primary TJA to determine the differences in transfusion rate and PLOS.MethodsWe analyzed the data from 12,992 patients undergoing primary unilateral TJA: 6325 total knee arthroplasties (TKA) and 6667 total hip arthroplasties (THA). Patients were divided into two groups according to whether they received a drain postoperatively following TKA and THA. We extracted information for transfusion and PLOS from patients’ electronic health records and analyzed the data by logistic and linear regression analyses.ResultsThe transfusion rate and PLOS were 15.07% and 7.75 ± 3.61 days, respectively, in the drain group and 6.72% and 6.54 ± 3.32 days, respectively, in the no-drain group following TKA. The transfusion rate and PLOS were 20.53% and 7.00 ± 3.35 days, respectively, in the drain group and 13.57% and 6.07 ± 3.06 days, respectively, in the no-drain group following THA. After adjusting for the following variables: age, gender, body mass index, orthopedic diagnoses, hypertension, type 2 diabetes, coronary heart disease, chronic obstructive pulmonary disease, preoperative hemoglobin, albumin, analgesic use, anesthesia, American Society of Anesthesiologists class, tranexamic acid use, intraoperative bleeding, operative time, and tourniquet use (for TKA), drain use correlated significantly with a higher transfusion rate (risk ratio = 2.812, 95% confidence interval (CI) 2.224–3.554, P < 0.001 for TKA and risk ratio = 1.872, 95% CI 1.588–2.207, P < 0.001 for THA) and a longer PLOS (partial regression coefficient (B) = 1.099, 95% CI 0.879–1.318, P < 0.001, standard regression coefficient (B′) = 0.139 for TKA; B = 0.973, 95% CI 0.695–1.051, P < 0.001, and B′ = 0.115 for THA). Two groups showed no significant difference in wound complications.ConclusionsOur findings indicated that drain use was associated with a higher transfusion rate and a longer PLOS in patients undergoing routine primary TJA. The routine use of postoperative drainage is not recommended in primary unilateral TJA.
Highlights
The use of closed suction drainage (CSD) in surgery has been a standard practice since the time of Hippocrates [1]
The effect of drain use on transfusion rate and postoperative length of stay (PLOS) after total knee arthroplasties (TKA) As shown in Table 5, univariate analyses showed that CSD was highly associated with the transfusion rate (relative risk (RR) = 2.461, 95% confidence interval (CI) 2.010–3.013, P < 0.001) and PLOS (partial regression coefficient (B) = 1.214, 95% Confidence interval (CI) 1.016–1.412, P
After further controlling for all covariates, drain use remained correlated with a higher transfusion rate (odds ratio (OR) = 2.812, 95% CI 2.224–3.554, P < 0.001) and a longer PLOS (B = 1.099, 95% CI 0.879–1.318, P < 0.001; B′ = 0.139), as in model 3
Summary
The use of closed suction drainage (CSD) in surgery has been a standard practice since the time of Hippocrates [1]. The exclusion of CSD in total joint arthroplasty (TJA) is becoming increasingly accepted with enhanced recovery after surgery (ERAS) programs. Opponents of CSD propose that CSD in TJA is associated with greater blood loss because the drain prevents the tamponade effect [6] and because of the higher risk of infection secondary to retrograde bacterial migration [7]. In an enhanced recovery after surgery program, not placing a closed suction drain following routine primary total joint arthroplasty (TJA) is becoming more acceptable. The influence of drain use on transfusion rate and postoperative length of stay (PLOS) in TJA remains controversial.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have