Abstract
The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the vdW toque applied to the mirror. Finally analytical tool Homotopy Perturbation Mehtod (HPM) is utilized for prediction of the nano/micromirror behaviour under combined capillary and vdW force. It is observed that a sixth order perturbation approximation accurately predicts the rotation angle and stability limits of the mirror. Results of this paper can be used for successful fabrication of nano/micromirrors using wet etching process where capillary force plays a major role in the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have