Abstract
Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma. This paper reviews the relationship between CHIP and lymphoma, focusing on the role and mechanism of TET2 and DNMT3A-mediated CHIP in lymphoma from the perspective of laboratory research and clinical observation. Additionally, we explore the therapeutic implications of targeting CHIP genes and inflammatory pathways in lymphoma. Our findings underscore the multifaceted influence of CHIP on lymphoma development and provide a promising avenue for therapeutic interventions in CHIP mediated lymphoma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have