Abstract

To explore the clinical value of constructing a nomogram model based on apparent diffusion coefficient values within 1cm of the residual tumor cavity to predict the postoperative progression of gliomas. Clinical data of patients with glioma who underwent surgery were retrospectively retrieved from the First Hospital of Qinhuangdao. The mean apparent diffusion coefficient (mADC) was measured using a picture archiving and communication system. The Kaplan-Meier survival curve was constructed with the optimal mADC threshold determined by the X-tile. A nomogram was developed based on the independent risk factors determined using the Cox proportional hazards model (Cox regression model) to predict the progression of postoperative glioma. A receiver operating characteristic curve was drawn to evaluate the prediction accuracy of the model, and decision curve analysis was performed to assess the clinical value of the nomogram. There was good agreement between the mADC values of the 2 repeated measurements before and after, with a consistency correlation coefficient of 0.83. Multivariate Cox regression analysis showed that peritumoral mADC values, degree of peritumoral enhancement, age, pathological grading, and degree of tumor resection were independent risk factors for predicting postoperative progression of glioma (all P<0.05). The receiver operating characteristic curves of the nomogram predicting 1, 2, and 3years postoperative progression were 0.86, 0.82, and 0.91, respectively. The calibration curve showed good consistency between the observed and predicted values in the model. The curve showed that the nomogram model has a good clinical application value. The peritumoral mADC values, degree of peritumoral enhancement, age, pathological grade, and degree of tumor resection were independent factors affecting the postoperative progression of glioma. The nomogram model established for the first time based on mADC values within 1cm of the tumor can predict the postoperative condition of patients with glioma intuitively and comprehensively. It can provide a relatively accurate prediction tool for neurosurgeons to individualize the evaluation of survival and prognosis, and formulate treatment plans for patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call