Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection has proven to be extremely contagious and has spread rapidly all over the world. A key aspect in limiting the virus diffusion is to ensure early and accurate diagnosis. Serological assays could be an alternative in increasing testing capabilities, particularly when used as part of an algorithmic approach combined with molecular analysis. The aim of this study was to evaluate the diagnostic accuracy of a second generation chemiluminescent automated immunoassay able to detect anti‐SARS‐CoV‐2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies. Data are carried out on healthy subjects and other infectious diseases pre‐pandemic sera, as controls, and on two different coronavirus disease 2019 hospitalized patient groups (early and late infection time). Data obtained have been analyzed in terms of precision, linearity, sensitivity and specificity. Specificities are: 100% for anti‐SARS‐CoV‐2 IgG and 98% for anti‐SARS‐CoV‐2 IgM, in all patient groups. Sensitivities are: 97%, 100%, and 98% for anti‐SARS‐CoV‐2 IgG and 87%, 83%, and 86% for anti‐SARS‐CoV‐2 IgM in the early infection, in the late infection and in the total patient group, respectively. The Mindray anti‐SARS‐CoV‐2 IgG and IgM assays demonstrated higher sensitivity and specificity, indicating that IgG and IgM simultaneous detection is useful even in the early phases of infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.