Abstract

Sapovirus (SaV) infection is increasing worldwide. Herein, we provided evidence of a significant increase in SaV infection in Japan during 2010-2022, primarily due to the considerable (p = 0.0003) rise of the GI.1 genotype. Furthermore, we found that all major and minor SaV outbreaks in Japan, including the largest SaV outbreak in 2021-2022, were caused by the GI.1 genotype. Therefore, to get insight into the underlying molecular mechanism behind this rising trend of the SaV GI.1 type, we selected 15 SaV GI.1 outbreak strains for complete genome analysis through next-generation sequencing. Phylogenetically, our strains remained clustered in different branches in lineages I and II among the GI.1 genotype. We showed all amino acid (aa) substitutions in different open reading frames (ORFs) in these strains. Importantly, we have demonstrated that the strains involved in the largest SaV outbreak in Japan in 2021-2022 belonged to lineage II and possessed the third ORF. We have identified some unique aa mutations in these major outbreak strains in the NS1 and NS6-NS7 regions that are thought to be associated with viral pathogenicity, cell tropism, and epidemiological competence. Thus, in addition to enriching the database of SaV's complete sequences, this study provides insights into its important mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.