Abstract

Sex chromosome gene dosage compensation is required to ensure equivalent levels of X-linked gene expression between males (46, XY) and females (46, XX). To achieve similar expression, X-chromosome inactivation (XCI) is initiated in female cells during early stages of embryogenesis. Within each cell, either the maternal or paternal X chromosome is selected for whole chromosome transcriptional silencing, which is initiated and maintained by epigenetic and chromatin conformation mechanisms. With the emergence of small-molecule epigenetic inhibitors for the treatment of disease, such as cancer, the epigenetic mechanism underlying XCI may be inadvertently targeted. Here, we test 2 small-molecule epigenetic inhibitors being used clinically, GSK126 (a histone H3 lysine 27 methyltransferase inhibitor) and suberoylanilide hydroxamic acid (a histone deacetylase inhibitor), on their effects of the inactive X (Xi) in healthy human female fibroblasts. The combination of these modifiers, at subcancer therapeutic levels, leads to the inability to detect the repressive H3K27me3 modification characteristic of XCI in the majority of the cells. Importantly, genes positioned near the X-inactivation center (Xic), where inactivation is initiated, exhibit robust expression with treatment of the inhibitors, while genes located near the distal ends of the X chromosome intriguingly exhibit significant downregulation. These results demonstrate that small-molecule epigenetic inhibitors can have profound consequences on XCI in human cells, and they underscore the importance of considering gender when developing and clinically testing small-molecule epigenetic inhibitors, in particular those that target the well-characterized mechanisms of X inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.