Abstract

BackgroundTo compare the protective effects of the histone deacetylase inhibitors (HDACis) β-hydroxybutyrate (βOHB), trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) on human lens epithelial cells(HLECs) following ultraviolet-B (UVB) exposure.MethodsHLECs were divided into subgroups: four HDACi groups, a control group, a UVB-treated group and a DMSO group (cells treated with DMSO and UVB irradiation). In the HDACi groups, HLECs were cultured with different concentrations of HDACis 12 h prior to UVB irradiation. The protective effects of the HDACis were evaluated by assessing apoptosis rates, cell activity and expression levels of genes associated with apotosis (caspase-3, Bcl-2, BAX, SOD1, FOXO3A and MT2). The levels of superoxide dismutase (SOD), reactive oxygen species (ROS), malondialdehyde (MDA) and total antioxidant capacity (T-AOC) were detected in order to evaluate oxidative stress.ResultsThe results showed that SAHA (1 μmol/L, 2 μmol/L) and TSA (0.2 μmol/L) had mild protective effects on cell viability. βOHB (4 mmol/L) and TSA (0.2 mol/L) demonstrated protective effects on BCL-2 expression. TSA (0.2 mol/L) showed protective effects on SOD1 expression. TSA (0.2 mol/L) and SAHA (1 μmol/L) suppressed BAX and caspase-3 expression. TSA (0.2 mol/L, 0.8 mol/L) and SAHA (1 μmol/L, 2 μmol/L) suppressed the expression of FOXO3A and MT2. SOD levels were increased after treatment with βOHB (4 mmol/L), SAHA (8 μmol/L) and TSA (0.1 mol/L, 0.2 mol/L). T-AOC levels were increased in UVB-treated HLECs after treatment with SAHA (2 μmol/L). MDA levels decreased in UVB-treated HLECs following treatment with TSA (0.2 mol/L, 0.8 mol/L). ROS levels decreased in UVB-treated HLECs following treatment with βOHB (4 mmol/L), SAHA (1 μmol/L, 2 μmol/L) and TSA (0.2 mol/L). Western blotting results demonstrated that SOD1 levels significantly increased in the βOHB (4 mmol/L), SAHA (1 μmol/L, 2 μmol/L), TSA (0.1 mol/L, 0.2 mol/L) and VPA (5 mmol/L) groups. Only SAHA (1 μmol/L) had an anti-apoptotic effect on UVB-treated HLECs.ConclusionsOur findings indicate that low concentrations of HDACis (1 μmol/L of SAHA) mildly inhibit oxidative stress, thus protecting HLECs from oxidation. These results may suggest that there is a possibility to explore the clinical applications of HDACis for treatment and prevention of cataracts.

Highlights

  • Histoneacetylation is the most frequent epigenetic modification and has been shown to exert diverse effects on transcriptional activity, interactions between histones and DNA, changes in chromatin structure and the regulation of nucleosomes [1]

  • human lens epithelial cells (HLECs) viability and apoptosis following histone deacetylase inhibitors (HDACis) treatment HLECs were treated with indicated concentrations of HDACis for 12 h prior to UVB exposure, and the influence of HDACis on both cell viability and apoptosis were assessed

  • All the groups of indicated HDACi concentrations were exposed to UVB before CCK-8 assay. βOHB and suberoylanilide hydroxamic acid (SAHA) showed a dose-dependent decrease in cell viability. βOHB and valproic acid (VPA) had no protective effects in UVB-treated HLECs

Read more

Summary

Introduction

Histone (de)acetylation is the most frequent epigenetic modification and has been shown to exert diverse effects on transcriptional activity, interactions between histones and DNA, changes in chromatin structure and the regulation of nucleosomes [1]. HDACs condense chromatin and reduce gene expression by removing the acetyl group from histones [3]. A previous study from our group found that the decrease of histone acetylation at the SOD1 promoter is associated with the decrease of SOD1 expression in age-related cataracts. Histone acetylation has an important role in regulating SOD1 expression which participate in the pathogenesis of age-related cataracts [9]. Trichostatin A (TSA, an HDAC inhibitor) corrected the anacardic acid (AA, an HAT inhibitor)-induced imbalance between HATs and HDACs, resulting in enhancing SOD1 expression by reversing histone acetylation. To compare the protective effects of the histone deacetylase inhibitors (HDACis) β-hydroxybutyrate (βOHB), trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) on human lens epithelial cells(HLECs) following ultraviolet-B (UVB) exposure

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.