Abstract
This study evaluates different machine learning algorithms in detecting and identifying drones using radar data from a 60 GHz millimeter-wave sensor. These signals were collected from a bionic bird and two drones, namely DJI Mavic and DJI Phantom 3 Pro, which were represented in complex form to preserve amplitude and phase information. The first benchmarks used four algorithms, namely long short-term memory (LSTM), gated recurrent unit (GRU), one-dimensional convolutional neural network (Conv1D), and Transformer, and they were benchmarked for robustness under noisy conditions, including artificial noise types like white noise, Pareto noise, impulsive noise, and multipath interference. As expected, Transformer outperformed other algorithms in terms of accuracy, even on noisy data; however, in certain noise contexts, particularly Pareto noise, it showed weaknesses. For this purpose, we propose Multimodal Transformer, which incorporates more statistical features—skewness and kurtosis—in addition to amplitude and phase data. This resulted in a improvement in detection accuracy, even under difficult noise conditions. Our results demonstrate the importance of noise in processing radar signals and the benefits afforded by a multimodal presentation of data in detecting unmanned aerial vehicle and birds. This study sets up a benchmark for state-of-the-art machine learning methodologies for radar-based detection systems, providing valuable insight into methods of increasing the robustness of algorithms to environmental noise.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have