Abstract

SummaryProximal humerus fractures (PHF) are common injuries, but previous studies have documented poor inter-observer reliability in fracture classification. This disparity has been attributed to multiple variables including poor imaging studies and inadequate surgeon experience. The purpose of this study is to evaluate whether inter-observer agreement can be improved with the application of multiple imaging modalities including X-ray, CT, and 3D CT reconstructions, stratified by physician experience, for both classification and treatment of PHFs.MethodsInter-observer agreement was measured for classification and treatment of PHFs. A total of sixteen fractures were imaged by plain X-ray (scapular AP and lateral), CT scan, and 3D CT reconstruction, yielding 48 randomized image sets. The observers consisted of 16 orthopaedic surgeons (4 upper extremity specialists, 4 general orthopedists, 4 senior residents, 4 junior residents), who were asked to classify each image set using the Neer system, and recommend treatment from four pre-selected choices. The results were evaluated by kappa reliability coefficients for inter-observer agreement between all imaging modalities and sub-divided by: fracture type and observer experience.ResultsAll kappa values ranged from "slight" to "moderate" (k = .03 to .57) agreement. For overall classification and treatment, no advanced imaging modality had significantly higher scores than X-ray. However, when sub-divided by experience, 3D reconstruction and CT scan both had significantly higher agreement on classification than X-ray, among upper extremity specialists. Agreement on treatment among upper extremity specialists was best with CT scan. No other experience sub-division had significantly different kappa scores. When sub-divided by fracture type, CT scan and 3D reconstruction had higher scores than X-ray for classification only in 4-part fractures. Agreement on treatment of 4 part fractures was best with CT scan. No other fracture type sub-division had significantly different kappa scores.ConclusionsAlthough 3D reconstruction showed a slight improvement in the inter-observer agreement for fracture classification among specialized upper extremity surgeons compared to all imaging modalities, fracture types, and surgeon experience; overall all imaging modalities continue to yield low inter-observer agreement for both classification and treatment regardless of physician experience.

Highlights

  • Proximal humeral fractures (PHFs) comprise 5% of all fractures in adults and are the third most common fracture in adults over 65 years old [1]

  • Overall inter-observer agreement Agreement of classification across all modalities was only “slight,” and agreement of treatment across all modalities was “fair.” For classification: X-ray > 3D CT reconstruction > 2D CT scan with the kappa values being 0.14, 0.09, 0.07 respectively; 3D reconstruction was not statistically different than either X-ray or CT scan, but X-ray was significantly stronger than CT

  • Inter-observer agreement subdivided by fracture type We selected four fractures for each of the four major types of Neer classification schemes yielding a total of sixteen fractures

Read more

Summary

Introduction

Proximal humeral fractures (PHFs) comprise 5% of all fractures in adults and are the third most common fracture in adults over 65 years old [1]. In 1970, Charles Neer II created a classification system for fractures of the proximal humerus, which is widely utilized [2,3]. Over the past 2 decades the reliability of Neer’s system has been challenged, as multiple studies have reported low inter-observer agreement when attempting to classify PHFs using Neer’s system [4,5,6,7,8,9,10,11,12,13,14,15,16,17] or recommending subsequent treatment [18]. It has been postulated that the low levels of agreement is not a limitation of the classification systems itself but rather the surgeons’ inability to accurately interpret the images. Neer himself has rebutted that experience and suboptimal imaging are likely responsible for the lack of agreement in his system [22]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call