Abstract

HypothesisThis study aimed to examine whether three-dimensionally printed models (3D models) could improve interobserver and intraobserver agreement when classifying proximal humeral fractures (PHFs) using the Neer system. We hypothesized that 3D models would improve interobserver and intraobserver agreement compared with x-ray, two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) and that agreement using 3D models would be higher for registrars than for consultants.MethodsThirty consecutive PHF images were selected from a state-wide database and classified by fourteen observers. Each imaging modality (x-ray, 2D CT, 3D CT, 3D models) was grouped and presented in a randomly allocated sequence on two separate occasions. Interobserver and intraobserver agreements were quantified with kappa values (κ), percentage agreement, and 95% confidence intervals (CIs).ResultsSeven orthopedic registrars and seven orthopedic consultants classified 30 fractures on one occasion (interobserver). Four registrars and three consultants additionally completed classification on a second occasion (intraobserver). Interobserver agreement was greater with 3D models than with x-ray (κ = 0.47, CI: 0.44-0.50, 66.5%, CI: 64.6-68.4% and κ = 0.29, CI: 0.26-0.31, 57.2%, CI: 55.1-59.3%, respectively), 2D CT (κ = 0.30, CI: 0.27-0.33, 57.8%, CI: 55.5-60.2%), and 3D CT (κ = 0.35, CI: 0.33-0.38, 58.8%, CI: 56.7-60.9%). Intraobserver agreement appeared higher for 3D models than for other modalities; however, results were not significant. There were no differences in interobserver or intraobserver agreement between registrars and consultants.ConclusionThree-dimensionally printed models improved interobserver agreement in the classification of PHFs using the Neer system. This has potential implications for using 3D models for surgical planning and teaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.