Abstract

We introduce the multiscale entanglement renormalization ansatz, a class of quantum many-body states on a D-dimensional lattice that can be efficiently simulated with a classical computer, in that the expectation value of local observables can be computed exactly and efficiently. The multiscale entanglement renormalization ansatz is equivalent to a quantum circuit of logarithmic depth that has a very characteristic causal structure. It is also the ansatz underlying entanglement renormalization, a novel coarse-graining scheme for many-body quantum systems on a lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.