Abstract

Introduction: MicroRNAs (miRNAs) are non-coding RNA molecules with short sequences that function as main post-transcriptional gene regulators of different biological pathways via negative regulation of gene expression, thereby leading to either mRNA degradation or translational blockade. Dysregulated expression of these miRNAs has been related etiologically to many human diseases, including breast cancer. Various cellular processes of breast cancer progression, including cell proliferation, apoptosis, metastasis, recurrence and chemodrug resistance, are modulated by oncogenic miRNA (oncomiR). Objective: The objective of this investigation was to study the expression level and potential diagnostic/ prognostic roles of circulating microRNAs (miR-3183, miR-1185, and miR-584) as novel breast cancer biomarkers. Method: The current study was conducted on 99 breast cancer (BC) female patients, aged between 20-63 years old, as the case group and 50 age-matched healthy females as control (HC). After microRNA extraction from the serum samples, real-time PCR was carried out for relative expression quantification of miR-1185, miR-3183a, and miR-584. The ROC curve analysis was performed to investigate the diagnostic value of miRNAs. Result: It was demonstrated that miRNA-1185, miRNA-584, and miRNA-3183 were significantly up-regulated (p-values <0.0001) in female BC cases compared to the control group. Besides, based on the ROC analysis for BC versus HC, it was revealed that the AUC for miRNA-584 was 0.844 (95% confidence interval (CI) and could be proposed as a diagnostic biomarker for breast cancer screening and follow-up. Conclusion: MiRNAs expression profiling using blood-based samples demonstrated their upregulation in the serum and plasma and revealed the concept that circulating miRNAs have high potential as novel noninvasive biomarkers for cancer diagnosis and screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call