Abstract

Background: The angiogenesis post myocardial infarction (MI) is compromised in diabetes. MiR-144-3p is reported to be highly expressed in circulating exosomes of diabetic patients, implying its role in diabetic complications. However, whether circulating exosomes and enriched miR-144-3p are involved in the impaired neovascularization in diabetes and the underlying mechanism is unclear.Results: DMexo and miR-144-3p mimic-treated MSCs had elevated miR-144-3p levels and decreased MMP9, Ets1 and PLG expression. The percentage of EPCs were relatively lower in DMexo-treated or agomir-treated MI mice compared with MI mice. Finally, the luciferase assay confirmed the direct binding between miR-144-3p and Ets1.Conclusion: Exosomal miR-144-3p could impair the mobilization ability of EPCs, which was associated with impaired ischemia-induced neovascularization.Methods: Circulating exosomes were isolated from Streptozotocin (STZ)-induced mice. In vitro, mesenchymal stem cells (MSCs) were incubated with exosomes from diabetic mice (DMexo), and miR-144-3p mimic or inhibitor. miR-144-3p, and MMP9 pathway were measured using qPCR and immunoblotting. In vivo, MI mice induced by left anterior descending ligation were treated with DMexo, as well as miR-144-3p agomir. Flow cytometry was used to profile endothelial progenitor cells (EPCs) in peripheral blood and bone marrow post 24 hours respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.