Abstract

Three dimeric nitrophenyl trans-epoxyamides, chrysamides A-C (1-3), were obtained from the deep-sea-derived fungus Penicillium chrysogenum SCSIO41001. Their structures were characterized by spectroscopic analysis, electronic circular dichroism computations, and X-ray single-crystal diffraction analysis. Notably, compound 1 possesses a novel centrosymmetric dimer skeleton featuring an unprecedented 7-oxa-2,5-diazabicyclo[2.2.1]heptane ring system, which represents the first example of dimeric nitrophenyl trans-epoxyamide in nature. Compound 3 suppresses the production of proinflammatory cytokine interleukin-17. A possible biosynthetic pathway of 1-3 was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call