Abstract
Exposure to winter cold causes an increase in energy demands to meet the challenge of thermoregulation. In small rodents, this increase in cardiac output leads to a profound cardiac hypertrophy, 2-3x that typically seen with exercise training. The nature of this hypertrophy and its relevance to winter mortality remains unclear. Our goal was to characterize cold-induced cardiac hypertrophy and to assess its similarity to either exercise-induced (physiological) hypertrophy or the pathological hypertrophy of hypertension. We hypothesized that cold-induced hypertrophy will most closely resemble exercise-induced hypertrophy, but be another unique pathway for physiological cardiac growth. We found that cold-induced hypertrophy was largely reversed after return to warm temperatures. Further, metabolic rates were elevated while gene expression and mitochondrial enzyme activities indicative of pathology were absent. A gene expression panel comparing hearts of exercised and cold exposed mice further suggests that these activities are similar, although not identical. In conclusion, we found that chronic cold led to a phenotype that most closely resembled physiological hypertrophy, with enhanced metabolic rate, without induction of fetal genes , but with decreased expression of genes associated with fatty acid oxidation, suggesting that heart failure is not a cause of winter mortality in small rodents and identifying a novel approach for the study of cardiac growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.