Abstract
Organic photovoltaic cells are appealing as indoor illumination harvesters to drive off-grid electronics in the Internet of things. However, a desirable output power usually requires expansive and dark active layers to absorb sufficient incident photons. The deployment of such large-scale dark objects is detrimental to the elaborately designed indoor lighting environment and affects human visual perceptions. Here, we propose a free-contact strategy to adjust the chromaticity of the transmitted indoor light by applying one-dimensional photonic crystals. Combining photonic crystals with various transmittances outside the photovoltaic cells, the spectral power distribution of the transmitted light can be precisely manipulated to realize a broad and consecutive color modulation covering the region from blue to orange. For certain photonic crystals, the chromaticity of propagated light can be recovered close to the light source. This work presents a solution to relieve light-disturbing in the application of organic photovoltaic cells under indoor illuminations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.