Abstract
Chromatic and achromatic contrast sensitivity were measured in a human observer, 2 normal macaque monkeys, and 3 monkeys with severe toxicant-induced damage to the parvocellular projecting retinogeniculate pathway (P cell-deficient monkeys). Damage to the P pathway was produced by the oral administration of acrylamide monomer (Eskin and Merigan, 1986). Contrast sensitivity was measured in all subjects with isochromatic luminance gratings, as well as isoluminant chromatic gratings, modulated along several directions of a color space that represents color-opponent and luminance contrast (Krauskopf et al., 1986). The chromatic and achromatic sensitivity of the control monkeys was virtually identical to that of the human observer. Chromatic sensitivity of the P cell-deficient monkeys, measured at a low spatial frequency (0.3 c/deg), along a constant-blue color axis, was 0.9-1.5 log units lower than that of controls. Similar losses were seen along a tritanopic confusion axis and along 2 intermediate axes of color direction. Chromatic thresholds measured at higher spatial frequency (2.0 c/deg) were similarly reduced. Counterphase-modulated chromatic gratings were used to test color sensitivity over a range of temporal frequencies up to 15 Hz, and the loss of color vision was substantial over the entire range of frequencies. The luminance contrast sensitivity of the P cell-deficient monkeys for stationary gratings decreased after exposure by 0.5-0.8 log units. These results indicate that the chromatic and achromatic spatial vision of macaques is very similar to that of humans. They also suggest that the P pathway plays an important role in macaque chromatic sensitivity at all spatial frequencies, as well as achromatic sensitivity at high spatial and lower temporal frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.