Abstract

In order to investigate the mechanisms underlying green/red equiluminance matches in human observers and their relationship to mechanisms subserving luminance and/or chromatic (green/red) contrast sensitivity, we tested 21 human subjects along these dimensions at 16 different spatial and temporal frequencies (spatial frequency, 0.25–2 c/deg; temporal frequency, 2–16 Hz) and applied factor analysis to extract mechanisms underlying the data set. The results from our factor analysis revealed separate sources of variability for green/red equiluminance, luminance sensitivity and chromatic sensitivity, thus suggesting separate mechanisms underlying each of the three main conditions. When factor analysis was applied separately to green/red equiluminance data, two temporally-tuned factors were revealed (factor 1, 2–4 Hz; factor 2, 8–16 Hz), suggesting the existence of separate mechanisms underlying equiluminance settings at low versus high temporal frequencies. In addition, although the three main conditions remained separate in our factor analysis of the entire data set, our correlation matrix nonetheless revealed systematic correlations between equiluminance settings and luminance sensitivity at high temporal frequencies, and between equiluminance settings and chromatic sensitivity at low temporal frequencies. Taken together, these data suggest that the high temporal frequency factor underlying green/red equiluminance is governed predominantly by luminance mechanisms, while the low temporal frequency factor receives contribution from chromatic mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call