Abstract

The ability of cholesterol to modulate receptor-mediated increases in the volume-dependent release of the organic osmolyte, taurine, has been examined. Depletion of cholesterol from SH-SY5Y neuroblastoma by preincubation of the cells with 5 mM methyl-beta-cyclodextrin (CD) for 10 min resulted in a 40 to 50% reduction in cholesterol and an enhancement of the ability of proteinase-activated receptor (PAR) 1, muscarinic cholinergic receptor (mAChR), and sphingosine 1-phosphate receptor to stimulate taurine efflux, when monitored under hypoosmotic conditions. Basal (swelling-induced) release of taurine was also enhanced by cholesterol depletion, but less markedly. Both basal- and receptor-mediated increases in taurine efflux were mediated via a volume-sensitive organic osmolyte and anion channel in control and cholesterol-depleted cells. Studies with the PAR-1 and mAChR receptor subtypes indicated that the stimulatory effect of CD pretreatment could be reversed by incubation of the cells with either CD/cholesterol or CD/5-cholesten-3alpha-ol donor complexes and that cholesterol depletion increased agonist efficacy, but not potency. The ability of cholesterol depletion to promote the PAR-1 receptor-mediated stimulation of osmolyte release was most pronounced under conditions of isotonicity or mild hypotonicity. In contrast to CD pretreatment, preincubation of the cells with cholesterol oxidase, a condition under which lipid microdomains are also disrupted, had no effect on either basal- or receptor-stimulated taurine efflux. Taken together, the results suggest that cholesterol regulates receptor-mediated osmolyte release via its effects on the biophysical properties of the plasma membrane, rather than its presence in lipid microdomains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call