Abstract

In brain slices the mechanisms of release of GABA have been extensively studied, but those of taurine markedly less. The knowledge acquired from studies on GABA is, nevertheless, still fragmentary, not to speak of that obtained from the few studies on taurine, and firm conclusions are difficult, even impossible, to draw. This is mainly due to methodological matters, such as the diversity and pitfalls of the techniques applied. Brain slices are relatively easy to prepare and they represent a preparation that may most closely reflect relations prevailing in vivo, since the tissue structure and cellular integrity are largely preserved. In our opinion the most recommendable method at present is to superfuse freely floating agitated slices in continuously oxygenated medium. Taurine is metabolically rather inert in the brain, whereas the metabolism of GABA must be taken into account in all release studies. The use of inhibitors of GABA catabolism is discouraged, however, since a block in GABA metabolism may distort relations between different releasable pools of GABA in tissue. It is not known for sure how well, and homogeneously, incubation of slices with radioactive taurine labels the releasable pools but at least in the case of GABA there may prevail differences in the behavior of labeled and endogenous GABA. It is suggested therefore that the results obtained with radioactive GABA or taurine should be frequently checked and confirmed by analyzing the release of respective endogenous compounds. The spontaneous efflux of both GABA and taurine from brain slices is very slow. The magnitude of stimulation of GABA release by homoexchange is greater than that of taurine under the same experimental conditions. However, the release of both amino acids is generally enhanced by a great number of structural analogs, the most potent being those which are simultaneously the most potent inhibitors of uptake. This may result in part from inhibition of reuptake of amino acid molecules released from slices but the findings may also signify that the efflux of GABA and taurine is at least partially mediated by the membrane carriers operating in an outward direction. It is thus advisable not to interpret that stimulation of release in the presence of uptake inhibitors solely results from the block of reuptake of exocytotically released molecules, since changes in the carrier-mediated transport are also likely to occur upon stimulation. The electrical and K+ stimulation evoke the release of both GABA and taurine. The evoked release of GABA is several-fold greater than that of taurine in slices from the adult brain.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.