Abstract

It has previously been demonstrated, in dual probe microdialysis studies, that stimulation of the neostriatum with kainic acid causes the release of GABA both locally within the neostriatum and distally in the substantia nigra, observations that are consistent with the known anatomy of the basal ganglia. The object of the present study was to further examine the characteristics of GABA release and to determine whether taurine, which has been proposed to be present in striatonigral neurons, has similar characteristics of release, and to examine the release of excitatory amino acids under the same conditions. To this end, dual probe microdialysis studies were carried out on freely-moving rats. The application of kainic acid to neostriatum enhanced the release of GABA, taurine, aspartate and glutamate locally in the neostriatum and distally in the substantia nigra. The distal release of each amino acid in the substantia nigra was sensitive to the administration of 6,7-dinitroquinoxaline-2,3-dione and tetrodotoxin to the neostriatum. Similarly the local release of GABA, aspartate and glutamate but not taurine was sensitive to the intrastriatal application of 6,7-dinitroquinoxaline-2,3-dione or tetrodotoxin. It is concluded that the release of taurine from the substantia nigra has similar characteristics to that of GABA and may be released from the terminals of striatonigral neurons following the stimulation of their cell bodies in the neostriatum. The release of taurine in the neostriatum however, is likely to be mediated mainly by different mechanisms and not related to neuronal activity. The release of excitatory amino acids is likely to involve indirect effects in the neostriatum and polysynaptic pathways in the substantia nigra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.