Abstract

The ability of prostanoid receptors to regulate the volume-dependent efflux of the organic osmolyte taurine from murine fibroblasts (L cells) via a cAMP-dependent mechanism has been examined. Incubation of L cells under hypoosmotic conditions resulted in a time-dependent efflux of taurine, the threshold of release occurring at 250 mOsM. Addition of prostaglandin E(1) (PGE(1)) potently (EC(50) = 2.5 nM) enhanced the volume-dependent efflux of taurine at all time points examined and increased the threshold for osmolyte release to 290 mOsM. Maximal PGE(1) stimulation (250-300% of basal) of taurine release was observed at 250 mOsM. Of the PGE analogs tested, only the EP(2)-selective agonist butaprost (9-oxo-11alpha,16S-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid) was able to enhance taurine efflux. Inclusion of 1,9-dideoxyfoskolin, 5-nitro-2-(3-phenylpropylamino) benzoic acid, or 4-[(2-butyl-6,7-dicloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]-butanoic acid blocked the ability of PGE(1) to enhance taurine release, indicating the mediation of a volume-sensitive organic osmolyte and anion channel. The ability of PGE(1) to increase osmolyte release from L cells was mimicked by the addition of agents that inhibit cAMP breakdown, directly activate adenylyl cyclase, or are cell-permeant analogs of cAMP. Taurine release elicited by either PGE(1) or 8-(4-chlorophenylthio)-cAMP was attenuated by >70% in L cells that had been stably transfected with a mutant regulatory subunit of cAMP-dependent protein kinase (PKA). PGE(1) stimulation of taurine efflux was not attenuated by either depletion of intracellular calcium or inhibition of protein kinase C. The results indicate that activation of prostanoid receptors on murine fibroblasts enhances osmolyte release via a cAMP and PKA-dependent mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call