Abstract

Exposure to per- and polyfluoroalkyl substances (PFASs) has raised significant public health concerns due to their persistence and toxicity in the human body. Here, we aimed to investigate the characteristics of exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) and legacy PFASs and the relative contribution from different external pathways to human exposure. Three Cl-PFESAs and fourteen legacy PFASs were detected in human serum, fish, indoor dust and drinking water collected from Shijiazhuang, China. Results showed that 6:2 Cl-PFESA was the third most predominant compound, with an average concentration of 2.70ng/mL in serum, which was lower than those of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) (14.79 and 4.91ng/mL). The estimated daily intake of 6:2 Cl-PFESA via dust ingestion (mean: 0.008ng/kg bw/day) was found to be highest among all detected PFASs, while the highest value via fish and drinking water was found for PFOS and PFOA (0.438-9.799 and 0.034-0.155ng/kg bw/day), respectively. The similar composition of PFASs between serum and fish suggests that fish consumption is a major contributor to human exposure to PFASs. However, the increasing ratios of EDIindoor dust/EDIfish for PFOS, PFOA and 6:2 Cl-PFESA indicated that the contribution of dust ingestion for PFASs, especially 6:2 Cl-PFESA, could not be ignored. The modeled serum concentrations of 6:2 Cl-PFESA higher than its observed levels hint at its gradually increasing exposure levels in the general population. Combined with the lower modeled levels of PFOS than the observed levels, the substituent with 6:2 Cl-PFESA for PFOS is obvious in China. Therefore, further studies on contributions from more detailed external sources and risk assessments of Cl-PFESAs are recommended, especially for some vulnerable subpopulations, considering their widespread exposure and similar environmental behaviors compared with those of their predecessors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.