Abstract

Chirality and polarity are the two most important and representative symmetry-dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror-related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest-level challenge. Herein, a new symmetry-breaking strategy that employsheteroanionic groups to construct hourglass-like [Sr3 OGeS3 ]2+ and [Sr3 SGeS3 ]2+ groups to design and synthesize a new oxychalcogenide Sr18 Ge9 O5 S31 with chiral-polar duality is proposed. The presence of two enantiomers of Sr18 Ge9 O5 S31 is confirmed by the single-crystal X-ray diffraction. Its optical activity and ferroelectricity are also studied by solid-state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18 Ge9 O5 S31 possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61eV), and wide mid-infrared transparent region (≈15.3µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry-breaking and are able to provide some inspiration for exploring the chiral-polar duality materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call