Abstract

Small extracellular vesicles (sEVs) act as a critical mediator in intercellular communication. Compared to sEVs derived from in vitro sources, tissue-derived sEVs can reflect the in vivo signals released from specific tissues more accurately. Currently, studies on the role of sEVs in the cochlea have relied on studying sEVs from in vitro sources. This study evaluates three cochlear tissue digestion and cochlear tissue-derived sEV (CDsEV) isolation methods, and first proposes that the optimal approach for isolating CDsEVs using collagenase D and DNase І combined with sucrose density gradient centrifugation. Furthermore, it comprehensively investigates CDsEV contents and cell origins. Small RNA sequencing and proteomics are performed to analyze the miRNAs and proteins of CDsEVs. The miRNAs and proteins of CDsEVs are crucial for maintaining normal auditory function. Among them, FGFR1 in CDsEVs may mediate the survival of cochlear hair cells via sEVs. Finally, the joint analysis of single CDsEV sequencing and single-cell RNA sequencing data is utilized to trace cellular origins of CDsEVs. The results show that different types of cochlear cells secrete different amounts of CDsEVs, with Kölliker's organ cells and supporting cells secrete the most. The findings are expected to enhance the understanding of CDsEVs in the cochlea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.