Abstract

Drought to flood abrupt alternation (DFAA) events, as a special category of compound extreme events that suddenly shift from drought to flood conditions, have significantly greater impacts than individual drought or flood events. In this paper, we have utilized a multifactorial drought index and flood index to identify daily DFAA events occurring in mainland China and in major impact areas during the period 1961-2022. Based on drought and flood index, we have used entropy weighting method to measure the intensity of DFAA events. Our findings indicate that China's DFAA events primarily occur in the hotspots of Huang-Huai-Hai River Basin, the middle and lower Yangtze River Basin, the southeastern coastal area, and the southwestern part of the country. The most frequent and intense DFAA events occur from June to September, with varying subseasonal patterns in the frequency and intensity of events in each hotspot. The frequency of DFAA events in mainland China shows a significant decreasing trend declining at a rate of 0.25 pre year in year-round. While DFAA events occurring in the warm season tend to decrease more significantly compared to the year-round at a rate of 0.26 per year. However, the intensity of DFAA events is increasing with a rate of 0.1 per decade in both the year-round and warm season. The evolution of DFAA events and their direct causes vary non-uniformly across regions and months. Subseasonally, frequency and intensity trends diverged monthly across regions, notably with the Huang-Huai-Hai Basin and southeast coast experiencing a July decline in frequency but a surge in intensity. Our research deepens the understanding of changes in DFAA events and provides practical reference for preventing and mitigating drought-to-flood disasters in mainland China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.