Abstract

Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens’ feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched yeast on chicken breast meat nutritional value. The study also wished to see whether red palm oil had a cholesterol lowering effect on chicken plasma.204 male, newly hatched broiler chickens were randomly divided into twelve dietary treatment groups, and individually fed one out of six dietary fat combinations combined with either low (0.1 mg Se /kg feed) or high (1 mg Se/kg feed) dietary selenium levels. Linseed oil, independent of accompanying dietary fat source, lead to increased levels of the n-3 EPA, DPA and DHA and reduced levels of the n-6 arachidonic acid (AA). The ratio between AA/EPA was reduced from 19/1 in the soybean oil dietary groups to 1.7/1 in the linseed oil dietary groups. Dietary red palm oil reduced total chicken plasma cholesterol levels. There were no differences between the dietary groups with regard to measured meat antioxidant capacity or sensory evaluation. Chicken meat selenium levels were clearly influenced by dietary selenium levels, but were not influenced by feed fatty acid composition. High dietary selenium level lead to marginally increased n-3 EPA and higher meat fat % in breast muscle but did not influence the other LC PUFA levels. Chicken breast meat nutritional value from the soybean oil and low selenium dietary groups may be regarded as less beneficial compared to the breast meat from the linseed oil and high selenium dietary groups. Replacing rendered animal fat with palm oil and red palm oil had no negative effects on chicken muscle nutritional value with regard to fatty acid composition. Red palm oil decreased total chicken plasma cholesterol, confirming the cholesterol reducing effect of this dietary oil.

Highlights

  • The consumption of preformed n-3 long chained polyunsaturated fatty acids (LC Polyunsaturated fatty acid (PUFA)) is the most efficient way of raising the level of eicosapentenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in humans, as our endogenous production of these n-3 LC PUFAs from 18:3n-3 alpha-linolenic acid (ALA) is quantitatively limited [1,2,3,4]

  • Chickens in the soybean oil (SO) containing groups had significantly higher levels of n-6 linoleic acid (LA), while the Rendered animal fat (FR) + linseed oil (LO) dietary groups had the lowest levels of n-6 LA in breast muscle

  • The sum of PUFA was highest for the SO and the FR+LO +rapeseed oil (RO) dietary groups, while the FR + LO diet resulted in the lowest PUFA values in breast muscle

Read more

Summary

Introduction

The consumption of preformed n-3 long chained polyunsaturated fatty acids (LC PUFA) is the most efficient way of raising the level of eicosapentenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in humans, as our endogenous production of these n-3 LC PUFAs from 18:3n-3 alpha-linolenic acid (ALA) is quantitatively limited [1,2,3,4]. Consumers are being encouraged to increase their dietary intake of n-3 LC PUFA by consuming more fish or marine oil supplements. Resource limitations and consumer dietary preferences have lead to an increased focus on finding alternative ways of supplying dietary n-3 LC PUFAs and antioxidants such as selenium (Se) to the consumer. Utilizing the capacity of the chicken to produce LC PUFAs from both 18:2n-6 linoleic acid (LA) and ALA represents a good way of supplying the human consumer with preformed dietary LC PUFA [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.