Abstract

Chemotaxis is one of the most essential cell physiological responses, which was developed in parallel the molecular evolution of signal molecules. Previously good correlations were found between chemotactic moieties and physicochemical properties (SEA, solubility, pKa) of peptide type ligands in Tetrahymena model. However, references are rather weak in eukaryotic chemotaxis about significance of simple carbohydrates. In the present work our goal is (i) to investigate the chemotactic effect of 10 mono- and disaccharides in the eukaryotic Tetrahymena pyriformis; (ii) to describe effective ligands with physicochemical parameters; (iii) to test whether sugars are acting via induction of metabolic pathways. Our results are: (i) the tested sugars can trigger both significant attractant (d-glucose, d-mannose) and significant repellent (d-glucosamine, d-fructose, N-acetyl-d-galactosamine, d-arabinose) effects, while some of the sugars (maltose, lactose, sucrose, d-galactose) had no effect. (ii) Correlations were described between the chemotactic effectiveness of the ligands and their physicochemical characters (TPSA, XLogP), which are supposed to influence the internalization of the sugars. (iii) All ligands proved to have low selection potential, which refers to a ‘short-term’ receptor moiety or influencing specific metabolic pathways. (iv) Starvation elicited modified, strong chemoattractive responsiveness towards glucose; however, it was independent of concentration while 1 h insulin treatment resulted in an increased and concentration dependent chemotaxis induced by glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.