Abstract

AbstractThis study introduces a new chemical method for controlling the strain in methylammonium lead iodide (MAPbI3) perovskite crystals by varying the ratio of Pb(Ac)2 and PbCl2 in the precursor solution. To observe the effect on crystal strain, a combination of piezoresponse force microscopy (PFM) and X‐ray diffraction (XRD) is used. The PFM images show an increase in the average size of ferroelastic twin domains upon increasing the PbCl2 content, indicating an increase in crystal strain. The XRD spectra support this observation with strong crystal twinning features that appear in the spectra. This behavior is caused by a strain gradient during the crystallization due to different evaporation rates of methylammonium acetate and methylammonium chloride as revealed by time‐of‐flight secondary ion mass spectroscopy and grazing incidince X‐ray diffraction measurements. Additional time‐resolved photoluminescence shows an increased carrier lifetime in the MAPbI3 films prepared with higher PbCl2 content, suggesting a decreased trap density in films with larger twin domain structures. The results demonstrate the potential of chemical strain engineering as a simple method for controlling strain‐related effects in lead halide perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.