Abstract
Membrane fouling induced by natural organic matter (NOM) has seriously affected the further extensive application of ultrafiltration (UF). Herein, a simple, green and robust vacuum ultraviolet (VUV) technology was adopted as pretreatment before UF and ultraviolet (UV) technology was used for comparison. The results showed that control effect of VUV pretreatment on membrane fouling was better than that of UV pretreatment, as evidenced by the increase of normalized flux from 0.27 to 0.38 and 0.73 after 30 min UV or VUV pretreatment, respectively. This is related to the fact that VUV pretreatment exhibited stronger NOM degradation ability than UV pretreatment owing to the formation of HO•. The steady-state concentration of HO• was calculated as 3.04 × 10−13 M and the cumulative exposure of HO• reached 5.52 × 10−10 M s after 30 min of VUV irradiation. And the second-order rate constant between NOM and HO• was determined as 1.36 × 104 L mg−1 s−1. Furthermore, fluorescence EEM could be applied to predict membrane fouling induced by humic-enriched water. Standard blocking and cake filtration were major fouling mechanisms. Moreover, extension of UV pretreatment time increased the disinfection by-products (DBPs) formation, the DBPs concentration was enhanced from 322.36 to 1187.80 μg/L after 210 min pretreatment. However, VUV pretreatment for 150 min reduced DBPs content to 282.57 μg/L, and DBPs content continued to decrease with the extension of pretreatment time, revealing that VUV pretreatment achieved effective control of DBPs. The variation trend of cytotoxicity and health risk of DBPs was similar to that of DBPs concentration. In summary, VUV pretreatment exhibited excellent effect on membrane fouling alleviation, NOM degradation and DBPs control under a certain pretreatment time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.