Abstract
Pinus roxburghii is a rich source of high-quality oleoresin that is composed of resin acids and essential oil (EO). The present research work was planned to study and compare the yield, biological activities, and chemical profiling of P. roxburghii oleoresin EOs extracted through various green extraction methods. Steam distillation (SD), supercritical fluid extraction, and superheated SD (SHSD) at different temperatures (120, 140, and 160°C) were employed to extract EOs from P. roxburghii oleoresin. Antioxidant potential of EOs was determined by total antioxidant content/ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity (DPPH-FRSA), hydrogen peroxide scavenging assays, and percentage inhibition in linoleic acid. Antimicrobial activity of EOs was determined by resazurin microtiter-plate, disc diffusion, and micro-dilution broth susceptibility assays. Gas chromatography-mass spectrometry was used to determine the chemical composition of EOs. It was observed that extraction methods significantly affected the yield, biological activities, and chemical composition of EOs. The maximum yield (19.92%) was found in EO extracted by SHSD at 160°C. EO extracted by SHSD at 120°C showed the highest DPPH-FRSA (63.33%±0.47%), linoleic acid oxidation inhibition (96.55%±1.71%), hydrogen peroxide scavenging activity (59.42%±0.32%), and total antioxidant contents/FRAP (134.49%±1.34mg/L of gallic acid equivalent). The antimicrobial activity results showed that superheated steam-extracted EO of 120°C revealed the highest antifungal and antibacterial activity. It is concluded that SHSD is an alternative and effective technique for the extraction of oleoresins EO that improves the EO yield and biological activities. Further research on optimization and experimental parameters for the extraction of P. roxburghii oleoresin EO by SHSD is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.