Abstract

This study investigated the effect of hot water blanching (HWB), high-humidity air-impingement blanching (HHAIB), different HHAIB blanching times (2, 4, 6, 8, and 10min), and different HHAIB blanching temperatures (80, 85, 90, and 95°C) on texture quality, lignin content, weight loss, color, microstructure, and drying kinetics of bamboo shoots. After HWB treatment, the lignin content of bamboo shoots was apparently lower than that of HHAIB and the samples obtained the highest weight loss value of 6.13%. Both the texture values (brittleness and chewiness) and lignin content of bamboo shoots exhibited an overall downward trend as the HHAIB blanching time and blanching temperature increased. Specifically, the lignin content of bamboo shoots decreased from 5.59% to 4.58% with an increase in HHAIB blanching time from 2 to 10min and dropped from 5.48% to 4.63% as HHAIB blanching temperature increased from 80 to 85°C, respectively. The lignin content was proved to be positively correlated (p<0.05) with texture attributes (brittleness and chewiness). A second polynomial model was obtained for fitting the variation kinetics of lignin content during thermal processing. Reducing the HHAIB blanching time and blanching temperature would obtain a lower weight loss and a better color performance (ΔE and L*). Additionally, microstructure observation revealed that the distribution density of microchannels initially increased and then decreased with the extension of blanching time, while it continuously became firmer as HHAIB blanching temperature increased. Overall, the optimal processing parameters were achieved under the HHAIB blanching temperature of 85°C for 6min, ensuring a high-quality performance of bamboo shoot products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.