Abstract

BackgroundMore than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Most bioactive compounds from sponges were classified into anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling. Evaluation of in vitro inhibitory effects of different extracts from four marine sponges versus some antioxidants indices and carbohydrate hydrolyzing enzymes concerned with diabetes mellitus was studied. The chemical characterizations for the extracts of the predominating sponges; SP1 and SP3 were discussed.MethodsAll chemicals served in the biological study were of analytical grade and purchased from Sigma, Merck and Aldrich. All kits were the products of Biosystems (Spain), Sigma Chemical Company (USA), Biodiagnostic (Egypt). Carbohydrate metabolizing enzymes; α-amylase, α-glucosidase, and β-galactosidase (EC3.2.1.1, EC3.2.1.20, and EC3.2.1.23, respectively) were obtained from Sigma Chemical Company (USA).ResultsFour marine sponges; Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4), were collected from the Red Sea at Egyptian coasts, and taxonomically characterized. The sponges' extracts exhibited diverse inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Purification and Chemical characterization of sponge 1 using NMR and mass spectroscopy, recognized the existence of di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), β-sitosterol (4), and cholesterol (5). Sponge 3 produced bis-[2-ethyl]-hexyl-phthylester (6) and triglyceride fatty acid ester (7).ConclusionMarine sponges are promising sources for delivering of bioactive compounds. Four marine sponges, collected from Red Sea at Egyptian coasts, were identified as Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4). The results demonstrated that different sponges extracts exhibited inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Chemical characterizations of sponges SP1 and SP3 were discussed. Based on this study, marine sponges are considered as talented sources for production of diverse and multiple biologically active compounds.

Highlights

  • More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found

  • Five compounds were revealed from SP1; di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), β-sitosterol (4), and cholesterol (5)

  • Biological study The present results demonstrate the inhibitory effect of different extracts of marine sponges, on antioxidant indices and carbohydrate hydrolyzing enzymes in vitro

Read more

Summary

Introduction

More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Pharmaceutical interest in sponges was aroused in the early 1950s by the discovery of a number of unknown nucleosides: spongothymidine and spongouridine in the marine sponge Cryptotethia crypta [1,2] These nucleosides were the basis for the synthesis of Ara-C, the first marine-derived anticancer agent and the antiviral drug Ara-A [3]. More than 15,000 marine products have been described up to now [4,5]; Sponges are champion producers, concerning the diversity of products that have been found [6] They are responsible for more than 5,300 different products and every year hundreds of new compounds are being discovered [4]. Most bioactive compounds from sponges can be classified as anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling [5,6,7,8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.