Abstract
Scheduling strategy is considered an important aspect of belief-propagation (BP) decoding of low-density parity-check (LDPC) codes because it affects the decoder's convergence rate, decoding complexity and error-correction performance. In this paper, we propose two new scheduling strategies for the BP decoding of non-binary LDPC (NB-LDPC) codes. Both the strategies are devised based on the concept of check node reliability and employ a heuristically defined threshold which can adapt to the communication channel variations. As the scheduling strategies only update a subset of the check nodes in each iteration, they result in reduced iteration cost. Furthermore, since the BP performs suboptimally for finite-length LDPC codes, especially for short-length LDPC codes, by enhancing the message propagation over the Tanner Graphs of short-length NB-LDPC codes, the new scheduling strategies can even improve the error-correction performances of BP decoding. Simulation results demonstrate that the new scheduling strategies provide good performance/complexity tradeoffs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have