Abstract

The photoproduction of 0–150-MeV charged pions from light nuclei is studied from a distorted wave impulse approximation (DWIA) approach. The final nuclear states are restricted to a finite set of isospin analogs of excited states of the target nucleus. The final state interactions of the pion with the residual nucleus are incorporated via optical potentials. The elementary photoproduction operator used is that of Blomqvist and Laget which is derived in a general reference frame. To gain insight into the predictive power of this DWIA approach, total and differential cross sections for π ± production from 6Li, 7Li, 10B, 12C, and 14N are calculated and compared with available data. It is found that, with a few exceptions, reasonable agreement is obtained between theory and experiment as long as the nuclear wave functions are constrained to fit other electromagnetic and weak processes and the optical potentials are constrained to fit pion-nucleus elastic scattering data. We conclude that, at this stage, using the Blomqvist-Laget operator in a DWIA calculation adequately describes the dynamics of charged pion photoproduction from complex nuclei. We illustrate how this reaction can be used to obtain information on the short range nature of the pion wave function and on nuclear wave functions. Shortcomings of and improvements on this calculation are also suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call