Abstract

In astrophysics, 4He(12C,16O)γ reaction places an important role. At Kyushu University Tandem accelerator Laboratory (KUTL), the measurement of 4He(12C,16O)γ cross section is in progress in the energy range of astrophysical nuclear reaction. Since the charge state of product 16O ions after passing through the gas target is spread and only one charge state can be measured at terminal detector, it is necessary to know the charge state distribution of 16O ions passing through the He gas target precisely. Here, we report the charge state distribution of the 16O recoils both experimentally and theoretically. Experimentally, we measured the equilibrium charge state distribution of 16O ions in the windowless helium gas target with the beam energy of primary 16O ions at 7.2, 4.5, and 3.45MeV at KUTL. The measured results showed a Gaussian distribution for the charge state fraction. Theoretically, we proposed a framework for the charge state distribution study. Charge state distribution was computed by solving a set of differential equations including a series of charge exchange cross sections. For the ionization cross section, plane-wave Born approximation was applied and modified by taking target atomic screening as a function of momentum transfer into account. For the capture cross section, continuum distorted wave approximation was applied and the influence of the gas target density was taken into account in the process of electron capture. Using above charge exchange cross sections, the charge state evolution was simulated. According to the equilibrium distribution, we compared the theoretical calculation to the experimental data. After taking into account the density effects in the charge exchange process, the theoretical charge state distributions shows a good agreement with the experimental data. Both experimental and theoretical results are useful to understand the charge fraction of recoil oxygen created via 4He(12C,16O)γ reaction, especially in the energy range of astrophysical nuclear reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call