Abstract

Spectroscopic charge pumping (CP) is used to study the evolution of the energy distribution of trapped electrons within HfSiON/SiO 2 gate stacks under substrate hot electron injection (SHEI). Base level CP measurements with large pulse amplitude allow an efficient charging/discharging of traps and reaching two defect bands in the HfSiON situated at 0.40 and 0.85 eV above the Si conduction band, respectively. Unlike standard constant voltage stress (CVS), SHEI enables full control of the stress by separately controlling the applied gate field, the injected electron energy, and the fluence. During CVS, HfSiON defects at 0.40 eV are generated. Conversely, during SHEI, either the shallow or the deep defects are preferentially created depending on the gate field as well as electron energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.