Abstract

A robust and highly reproducible capillary isoelectric focusing (cIEF) method for the evaluation of charge heterogeneity of monoclonal antibody (mAb) pharmaceutical which contains covalently bound antitumor compounds was developed using a combination of commercially available dimethylpolysiloxane-coated capillary and carrier ampholyte. In order to optimize major analytical parameters for robust mobilization, experimental responses from three pI markers were selected. The optimized method gave excellent repeatability and intermediate precision in estimated pI values of charge variants with relative standard deviations (RSDs) of not more than 0.06% and 0.95%, respectively, when using IgG 4 as a model. Furthermore, RSDs of charge variant compositions were less than 5.0%. These results suggest that the proposed method can be a powerful tool for reproducible evaluation of charge variants of both naked mAbs and their conjugates with high resolution, and it is applicable to quality testing and detailed characterization in the pharmaceutical industry. In addition, it should be noticed that the method provided non-linear pH gradient within the tested ranges, from pI 9.50 to 3.78, and the pH gradient caused the inconsistency of estimated pI ranges between cIEF and gel IEF. This result indicates that selecting appropriate pI markers based on the target pI ranges of charge variants for each mAb related pharmaceutical is highly recommended for the precise determination of pI values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.